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Abstract. Classical approximations for critical dynamics are taken as the basis of a new 
dynamical renormalisation group strategy in real space. The approach is phenomenological 
and avoids proliferation of interactions, as well as memory effects. For the square and 
cubic Glauber model, the best determinations of static critical properties come up with 
values for the dynamic exponent which appear compatible with the most recent estimates 
by Monte Carlo or series expansion methods. 

The major difficulties encountered in a dynamical renormalisation approach to kinetic 
spin models on lattices are memory effects in coarse-grained equations of motion 
(Mazenko and Valls 1982) and possible dangerous consequences of truncations of the 
dynamical hierarchy (Indekeu and Stella 1980). 

We introduce a new renormalisation scheme, which, due to its phenomenological 
character, remains free from these difficulties and allows us to compute directly the 
critical properties within the Markoffian dynamics. For the first time, we can comple- 
ment, by a technically simple and physically transparent real-space renormalisation 
method, the numerical results on two- and three-dimensional kinetic Ising models 
provided by more difficult Monte Carlo (Jan and Stauffer 1982), Monte Carlo renor- 
malisation (Tobochnik et a1 1981, Katz er a1 1982, Yalabik and Gunton 1982) and 
series expansion (Racz and Collins 1976) techniques. 

We start from classical (mean-field) equations of motion for the order parameter 
in which the conventional self-consistency requirements are relaxed to allow non- 
classical dynamical scaling behaviour. We provide hereby the appropriate extension 
to dynamics of a static mean-field renormalisation approach, which has already been 
applied successfully to ordered (Indekeu et a1 1982) and disordered (Droz et a1 1982) 
spin models, and to geometrical phase transitions (De’Belll983, De’Bell and Lookman 
1983). 

Consider a kinetic Ising model on a d-dimensional hypercubic lattice with single 
spin-flip transitions. Close to equilibrium and to criticality, the magnetisation is 
expected to scale, for long times t, as 

(1) 
where K is the reduced nearest-neighbour coupling with critical value K,, h is the 
magnetic field, L a scale factor, yT and yH the static critical exponents and z the dynamic 

m ( K ,  h, t )  = L - d + Y ~ m ( K c + L Y ~ ( K  -Kc) ,  L Y ~ h ,  L-‘t), 
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exponent. Our strategy consists in defining a dynamical renormalisation mapping 
implicitly, through an approximate realisation of equation (1).  

In the mean-field approximation for critical dynamics (Suzuki and Kubo 1968), a 
single spin a1 is surrounded by 2d nearest neighbours fixed to the average magnetisation 
m( t ) .  The classical equation of motion is then obtained by the self-consistency require- 
ment that the average of al, ml(r), equals m(t) .  This implies the classical result 
A( = z /  yT) = 1, because in this approximation the inverse relaxation time is analytic in 
K at criticality. 

Our proposal now is to surround al with 2d spins fixed to an ‘effective magnetisation’ 
b l ( t )  which is not self-consistently equated to ml( t ) ,  but which we ask to have the 
same scaling properties as the average magnetisation. 

To explain our approach with a most simple example, we first write down the 
evolution equation of ml( t ) ,  for h = 0 and linearised in bl(t) (since the magnetisation 
is infinitesimal in the scaling regime): 

dm,(t)/dr = -AI(K)ml(t)  + Bl(K)bl(t), (2) 

where A , ( K )  = 1 and B l ( K )  = 2dK. Next we consider a cluster of two interacting 
nearest-neighbour spins a1 and az, each surrounded by 2d - 1 effective magnetisations 
b 2 ( f ) .  The equation of motion for m2( t )  = ;(al + a& t )  then reads 

(3) dmz(t)/dt = -A2(K)mz( t )  + & ( K )  bz( t), 

where A z ( K )  = 1 - tanh K and B z ( K )  = (2d - l ) K ( l -  tanh’ K ) .  At this point, we 
define a renormalisation mapping of K into K ’ ,  in the scaling regime, by imposing the 
following finite-size realisation of equation (1) on the long-time solutions of equations 
(2) and (3): 

(4) m,(K, 0, t ;  [ b 2 ( f ) ] )  =L-d+YHml(Kf, 0, L-?; [b,(L-‘t)]), 

bz( t )  = L-d+YHbl(L-‘t). ( 5 )  

where L = 21’d is the length rescaling, and we assume that b( t )  scales like m(t) :  

Taking the time-derivative of equation (4) and using equations (2), (3) and (3, 

A 1 ( K f )  =L‘AZ(K) B,(K’)  =L’B,(K). (6a, b)  

we arrive at the following equations which determine the dynamic RG mapping: 

With reference to the solutions of equations (2) and (3) 

mN(t )  = “(0) e-A” eA”’bN(t’) dt’, ld (7) 

we notice that the map ( 6 )  is obtained by imposing the scalings (4) and (5) on the 
second terms. The first terms are transients (A;’ always finite) and are not involved 
in the scaling. Looking for a non-trivial fixed point K = K’=K* of equations (6a, b ) ,  
we obtain an estimate for K,  (=K*)  and for the dynamic exponent z. Furthermore, 
taking the ratio of (6a) to (6b), we deduce a purely static RG map K ’ ( K )  which is 
parametrically independent of z. This static recursion coincides with the one obtained 
with the static mean-field renormalisation approach (Indekeu et a1 1982) and yields 
yT=log(dK’/dKl~) / logL,  and (upon inclusion of a magnetic field h )  y,. 
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The effective magnetisation b( t )  can be viewed as a symmetry-breaking boundary 
condition on systems of small sizes. Finite-size scaling (Fisher and Barber 1972) then 
suggests that greater accuracy can be obtained by increasing the number of sites N 
and N' (=L-dN)  in the clusters. In table 1 we report the results of our mean-field 
renormalisation (MFRG) for the square lattice, using very small systems ( N  S 4). 

Table 1. Results for the 2D square kinetic king model. The mean-field renormalisation 
(MFRG) and the reaction-field renormalisation (RFRG: the numbers between brackets) 
are compared with results of other methods. Standard mean-field gives K ,  = 0.25 and A = 1. 

N N' K ,  YT YH z A 

MFRG (RFRG) 2 1 0.347 (0.398) 0.60 (0.67) 1.41 (1.62) 1.17 (2.19) 1.95 (3.27) 
4 1 0.361 (0.402) 0.69 (0.79) 1.50 (1.67) 1.39 (2.14) 2.01 (2.71) 
4 2 0.370 (0.404) 0.78 (0.92) 1.58 (1.72) 1.60 (2.06) 2.05 (2.24) 

Other methods 0.441' la 1.87" 2.2*0.2b 2.2*0.2b 

a Exact. 
bJan and Stauffer (1982), Katz et a1 (1982). 

For bigger systems ( N  > 4) mN( t )  is no longer an 'eigenmode' of the dynamics, 
but couples to higher spin correlations. It is then necessary to analyse the eigenmodes 
@ N , k ( t ) ,  k = 1 , 2 , .  . . , which satisfy equations of the form (2) or (3),  with proper 
coefficients AN,k and BN,k. When bN(t), which acts like an external driving force, is 
switched off, the kth mode relaxes with the intrinsic relaxation time A&,'k. The slowest 
eigenmode, say @N,l( t ) ,  is then the legitimate candidate to describe the critical relaxa- 
tion of mN(t ) .  More specifically, the appropriate equation that replaces equations (2) 
or (3) is obtained by taking the time derivative of the quantity @N,l(t) multiplied by 
the equilibrium ratio (mN/QN,,),,. In this way, the dynamic recursions ( 6 )  again imply 
correctly the RG map of the statics (Indekeu er al 1982). 

In table 2 we report our MFRG results for the simple cubic lattice ( d  = 3), using 
systems with N d 8, and compare them with series expansion analysis or field-theoretic 
predictions (Domb 1974, Le Guillou and Zinn-Justin 1980). 

Table 2. Results for the 3D cubic kinetic king model. Our approaches MFRG and RFRG 
(numbers in brackets) are compared with results of other approximate methods. Mean-field 
gives K,=0.167 and A =  1. 

N N' 

MFRG (RFRG) 2 1 
4 1  
4 2  
8 1  
8 2  
8 4  

Other methods 

0.203 (0.205) 
0.204 (0.207) 
0.205 (0.208) 
0.207 (0.209) 
0.208 (0.210) 
0.209 (0.212) 
0.222" 

YT 

0.65 (0.82) 
0.72 (0.91) 
0.79 (0.99) 
0.82 (1.01) 
0.90 (1.11) 
1.01 (1.22) 
1.59b 

YH 

1.89 (2.00) 
1.94 (2.06) 
1.98 (2.12) 
2.00 (2.13) 
2.05 (2.19) 
2.12 (2.26) 
2.48b 

z 

0.97 (1.30) 
1.06 (1.43) 
1.15 (1.54) 
1.20 (1.55) 
1.31 (1.66) 
1.46 (1.79) 

=2.0C 

A 

1.48 (1.59) 
1.47 (1.57) 
1.46 (1.56) 
1.46 (1.54) 
1.46 (1.50) 
1.45 (1.46) 

~1.3' 

a Domb (1974). 

'De Dominicis et al (1975). 
Le Guillou and Zinn-Justin (1980). 
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The MFRG results in tables 1 and 2 show a definite systematic improvment as the 
sizes increase. However, instead of proceeding towards bigger sizes, it is more con- 
venient to ask if the results can improve by taking as a starting point of the renormalisa- 
tion better classical approximations than standard mean-field ones. We were able to 
do this by starting from reaction-field approximations (Onsager 1936, Dekeyser and 
Halzen 1969) in thermal equilibrium, where the static effective magnetisation is made 
dependent on the spin configuration inside the cluster, such as to embody a reaction 
effect from the interior spins onto the driving forces at the boundary. 

We introduce the ‘effective reaction magnetisation’ rl( a,) surrounding a single spin 
U,, This quantity is defined as the equilibrium average of a spin s, subject to the 
condition that one of its nearest neighbours is ul and the others are fixed to bl, the 
configuration-independent effective magnetisation. This kind of conditional averaging 
procedure is one way to derive Onsager’s reaction-field correction to mean-field 
theoryt. A straightforward calculation yields (linearising in bl): 

r l ( a l )  = u1 tanh K + ( 2 d -  1)K(1 -tanh2 K)b, .  
The static magnetisation m1 is now obtained as the equilibrium average of U ,  

surrounded by 2d spins fixed to rl(  a,). In order to extend the reaction-field approxima- 
tion to dynamics we replace bl, just as before, by its time-dependent generalisation 
b,(t). The equation of motion for ml(t) is then given by equation (2) with Al(K)  = 1 
and B , ( K )  = 2 d ( 2 d -  1)K2(1 - tanh2 K).  

In order to exemplify the generalisation of our procedure to larger clusters, we 
illustrate in figure 1 our reaction-field calculation for a cluster of two nearest-neighbour 
sites. Because of the anisotropic geometry we now construct, e.g., both a transverse 
reaction field f2(u1, az) and a longitudinal field rz(al) acting on the spin al. Without 
going into technical details we mention that the effect of f2(u1, u2) is not only to modify 
the coupling of u1 and vZ to b2, but also to change the interaction between U ,  and 
UZ. On the basis of the effective two-site Hamiltonian with modified interactions, the 
transition rates w,( { a}) are constructed according to the detailed-balance principle, 
with the standard choice w j ( { a } )  =$nu (1 -aj tanh K , ( K )  X uu), where the index a 
takes into account the possibility of reaction field generated interactions different from 
the nearest-neighbour one in more general cases. 

In table 1 we present the results of our reaction-field renormalisation (RFRG) for 
the square lattice. When comparing FWRG and MFRG results in this table, it is clear 
that the inclusion of the reaction-field correction is working extremely well. For sizes 

F i r e  1. (a)  A two-spin cluster is illustrated with its effective reaction-field boundary. 
( b )  It is shown how to calculate, e.g., t2(ul,  uz) as the cluster average over s1 and s2, of 
spin sl. (c) The calculation of r2(u1), as the average over s1 and s2 of spin sl, is shown. 

t This was pointed out to us by A Maritan. 
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as small as N = 4 and N‘ = 2 we are now able to get all our estimates well within 10% 
of the exact results or possibly most reliable predictions. We draw attention to the 
fact that the estimate z = 2.2(*0.1) comes from a recent high-temperature analysis, a 
Monte Carlo simulation and Monte Carlo RG, and that older estimates were lower 
(typically 2.0hO.l)t.  Up to now, it has been extremely difficult, if not impossible, to 
draw reliable dynamical exponents from other real space RG methods (Indekeu and 
Stella 1980, Deker and Haake 1980, Mazenko and Valls 1981, Takano and Suzuki 
1982, Haake and Lewenstein 1983). 

In table 2 we report our RFRG results for the Glauber model on a cubic lattice. 
Similarly to what happended in d = 2, the results are generally better now than in 

the MFRG case. Both MFRG and RFRG sequences for A are definitely coming within 
10% of estimates by high-T series analysis ( A  = 1.32k0.33) or &-expansions ( A =  1.3) 
(Racz and Collins 1976, De Dominicis et a1 1975). 

What we have proposed here is a ‘phenomenological’ RG approach which operates 
entirely within the Markoffian dynamics of a nearest-neighbour model and produces 
neither couplings of longer range in space, nor memory effects of non-zero range in 
time. Our method is simple and widely applicable as the calculations involve only a 
small number of degrees of freedom and exploit optimally the physics contained in 
local fluctuations of the order parameter. 

We thank R Dekeyser and A Maritan for useful discussions. JOI is Senior Research 
Assistant of the Belgian National Fund for Scientific Research. More details about 
this work will be published elsewhere. 
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